0

Full Content is available to subscribers

Subscribe/Learn More  >

Decontamination and Provenance Tracking

[+] Author Affiliations
David Bradbury, George R. Elder

Bradtec, Stonehouse, Gloucestershire, UK

John C. Ritchie, Robert G. Ward

PDSI

Paper No. ICEM2003-4566, pp. 109-114; 6 pages
doi:10.1115/ICEM2003-4566
From:
  • ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation
  • 9th ASME International Conference on Radioactive Waste Management and Environmental Remediation: Volumes 1, 2, and 3
  • Oxford, England, September 21–25, 2003
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 0-7918-3732-7 | eISBN: 0-7918-3731-9
  • Copyright © 2003 by ASME

abstract

Decommissioning of retired nuclear plants and facilities demands the proper management of the process, both for economic reasons and for retaining public confidence in the continued use of nuclear power for electricity generation. There are significant potential benefits, both economic and environmental, in recycling materials from retired nuclear facilities for new uses rather than disposing of them as radioactive waste. Although it is technically possible to decontaminate many retired nuclear components to reduce contamination levels to below those appropriate for free release into the public domain, there is some public unease at the prospect of formerly contaminated materials passing into unrestricted public use. Greater support for recycle can be achieved by converting decontaminated materials into products for new controlled uses, particularly within the nuclear industry. Irrespective of the future of nuclear power, the industry has a need for many new items such as waste containers, replacement components etc. Good economics can be achieved by decontaminating the materials and then using existing non-radioactive manufacturing facilities for fabrication of new components. Provided that materials have first been decontaminated to below unrestricted release levels, there is no objection in principle to using non-radioactive facilities for recycling and manufacturing activities, so long as the materials are properly tracked to prevent their uncontrolled release. Surface decontamination has an important role to play in these activities. Efficient and economic decontamination processes are needed to prepare materials for recycle. The EPRI DFDX Process is a process for achieving these objectives. Recent progress with this process is described.

Copyright © 2003 by ASME
Topics: Decontamination

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In