0

Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation in Optimal Locations by Genetic Algorithm for Balancing Flexible Rotor-Bearing Systems

[+] Author Affiliations
Tsu-Wei Lin, Yuan Kang, Chun-Chieh Wang, Chuan-Wei Chang, Chih-Pin Chiang

Chung Yuan Christian University, Chungli, Taiwan, R.O.C.

Paper No. GT2005-69048, pp. 899-906; 8 pages
doi:10.1115/GT2005-69048
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2005
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4727-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

This study utilizes genetic algorithm to minimize the condition number of Hermitian matrix of influence coefficient (HMIC) to reduce the computation errors in balancing procedure. Then, the optimal locations of balancing planes and sensors would be obtained as fulfilling optimization. The finite element method is used to determine the steady-state response of flexible rotor-bearing systems. The optimization improves the balancing accuracy, which can be validated by the experiments of balancing a rotor kit.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In