0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Experimental Investigation of Micro-Hydrostatic Gas Thrust Bearings for Micro-Turbomachines

[+] Author Affiliations
C. J. Teo, Z. S. Spakovszky

Massachusetts Institute of Technology, Cambridge, MA

Paper No. GT2005-68222, pp. 689-700; 12 pages
doi:10.1115/GT2005-68222
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2005
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4727-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

One of the major challenges for the successful operation of high-power-density micro-devices lies in the stable operation of the bearings supporting the high-speed rotating turbomachinery. Previous modeling efforts by Piekos [1], Liu et al. [2] and Spakovszky and Liu [3] have mainly focused on the operation and stability of journal bearings. However, since thrust bearings play the vital role of providing axial support and stiffness, there is a need to gain a fuller understanding of their behavior. In this work, a rigorous theory is presented to analyze the effects of compressibility in micro-flows (characterized by low Reynolds numbers and high Mach numbers) through hydrostatic thrust bearings for application to microturbomachines. The analytical model, which combines a 1-D compressible flow model with Finite-Element Analysis, serves as a useful tool for establishing operating protocols and assessing the stability characteristics of hydrostatic thrust bearings. The model is capable of predicting key steady-state performance indicators, such as bearing mass flow, axial stiffness and natural frequency as a function of the hydrostatic supply pressure and thrust bearing geometry. The model has been applied to investigate the static stability of hydrostatic thrust bearings in micro-turbine-generators, where the electrostatic attraction between the stator and rotor gives rise to a negative axial stiffness contribution and may lead to device failure. Thrust bearing operating protocols have been established for a micro-turbopump, where the bearings also serve as an annular seal preventing the leakage of pressurized liquid from the pump to the gaseous flow in the turbine. The dual role of the annular pad poses challenges in the operation of both the device and the thrust bearing. The operating protocols provide essential information for the required thrust bearing supply pressures and axial gaps required to prevent the leakage of water into the thrust bearings for various pump outlet pressures. Good agreement is observed between the model predictions and experimental results. In addition, a dynamic stability analysis is also performed, which indicates the occurrence of unstable axial oscillations due to flow choking effects in both forward and aft thrust bearings. These a-priori dynamic stability predictions were subsequently verified experimentally on a micro-turbocharger. The frequencies of unstable axial oscillations predicted using the model compare favorably to those determined experimentally, thus vindicating the validity of the model. A simple and useful dynamic stability criterion is established, where the occurrence of flow choking in both thrust bearings give rise to dynamic instability.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In