0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Rotordynamics of Automotive Turbochargers: Predictions and Comparisons to Test Data

[+] Author Affiliations
Luis San Andrés, Juan Carlos Rivadeneira

Texas A&M University, College Station, TX

Murali Chinta, Gerry LaRue

Honeywell Turbo Technologies, Torrance, CA

Kostandin Gjika

Honeywell Turbo Technologies, Thaon les Vosges, France

Paper No. GT2005-68177, pp. 671-678; 8 pages
doi:10.1115/GT2005-68177
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2005
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4727-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

Passenger vehicle turbochargers (TCs) offer increased engine power and efficiency in an ever-competitive marketplace. Turbochargers operate at high rotational speeds and use engine oil to lubricate fluid film bearing supports (radial and axial). However, TCs are prone to large amplitudes of sub-synchronous shaft motion over wide ranges of their operating speed. Linear rotordynamic tools cannot predict the amplitudes and multiple frequency shaft motions. A comprehensive nonlinear rotordynamics model coupled to a complete fluid-film-bearing model solves in real time the dynamics of automotive turbochargers. The computational design tool predicts the limit cycle response for several inner and outer film clearances and operating conditions including rotor speed and lubricant feed pressure. Substantial savings in product development and prototype testing are the benefits of the present development. The paper presents predictions of the linear and nonlinear shaft motion of an automotive turbocharger supported on a semi-floating ring bearing. The shaft motion predictions are compared to measurements of shaft motion at the compressor nose for speeds up to 240 krpm, and for lubricant inlet pressure of 4 bar at 150°C. Linear and nonlinear rotordynamic models reproduce very well the test data for synchronous response to imbalance. The nonlinear results show two sub-synchronous whirl frequencies whose large magnitudes agree well with the measurements. A large side load predicted for this turbocharger must be considered for accurate prediction of the rotordynamic response.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In