0

Full Content is available to subscribers

Subscribe/Learn More  >

A Probabilistic Micromechanical Code for Predicting Fatigue Life Variability: Model Development and Application

[+] Author Affiliations
K. S. Chan, M. P. Enright

Southwest Research Institute, San Antonio, TX

Paper No. GT2005-68983, pp. 513-521; 9 pages
doi:10.1115/GT2005-68983
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2005
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4727-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

This paper summarizes the development of a probabilistic micromechanical code for treating fatigue life variability resulting from material variations. Dubbed MicroFaVa (Micro mechanical Fa tigue Va riability), the code is based on a set of physics-based fatigue models that predict fatigue crack initiation life, fatigue crack growth life, fatigue limit, fatigue crack growth threshold, crack size at initiation, and fracture toughness. Using microstructure information as material input, the code is capable of predicting the average behavior and the confidence limits of the crack initiation and crack growth lives of structural alloys under LCF or HCF loading. This paper presents a summary of the development of the code and highlights applications of the model to predicting the effects of microstructure on the fatigue crack growth response and life variability of the α + β Ti-alloy Ti-6Al-4V.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In