Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models

[+] Author Affiliations
M. Venturini

University of Ferrara, Ferrara, Italy

Paper No. GT2005-68030, pp. 255-266; 12 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2005
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4727-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


In the paper, self-adapting models capable of reproducing time-dependent data with high computational speed are investigated. The considered models are recurrent feed-forward neural networks (RNNs) with one feedback loop in a recursive computational structure, trained by using a back-propagation learning algorithm. The data used for both training and testing the RNNs have been generated by means of a non-linear physics-based model for compressor dynamic simulation, which was calibrated on a multi-stage axial-centrifugal small size compressor. The first step of the analysis is the selection of the compressor maneuver to be used for optimizing RNN training. The subsequent step consists in evaluating the most appropriate RNN structure (optimal number of neurons in the hidden layer and number of outputs) and RNN proper delay time. Then, the robustness of the model response towards measurement uncertainty is ascertained, by comparing the performance of RNNs trained on data uncorrupted or corrupted with measurement errors with respect to the simulation of data both uncorrupted and corrupted with measurement errors. Finally, the best RNN model is tested on field data taken on the axial-centrifugal compressor on which the physics-based model was calibrated, by comparing physics-based model and RNN predictions against measured data. The comparison between RNN predictions and measured data shows that the agreement can be considered acceptable for inlet pressure, outlet pressure and outlet temperature, while errors are significant for inlet mass flow rate.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In