0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermoeconomic Analysis and Optimization of a Gas Turbine Cogeneration Unit by a Systems Approach

[+] Author Affiliations
Ryohei Yokoyama, Shinsuke Takeuchi, Koichi Ito

Osaka Prefecture University, Sakai, Osaka, Japan

Paper No. GT2005-68392, pp. 127-133; 7 pages
doi:10.1115/GT2005-68392
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2005
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4727-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

It is important to design and operate energy conversion systems such as gas turbine cogeneration ones optimally from the thermoeconomic viewpoint. However, an energy conversion system has a complex network structure, and it takes much time to create its model for the thermoeconomic analysis and optimization. In this paper, a systems approach is presented for the performance analysis and optimization of mechanical systems with network structures, and it is applied to the thermoeconomic analysis and optimization of a gas turbine cogeneration unit. The system modeling for the performance analysis is conducted by a building block approach. Static and dynamic problems for the performance analysis are formulated as sets of nonlinear algebraic and differential algebraic equations, and are solved by the Newton-Raphson method and a hierarchical combination of the Runge-Kutta and Newton-Raphson methods, respectively. The performance optimization is conducted to determine design and operation conditions which optimize performance criteria. This problem is formulated as a nonlinear programming one and is solved by a global optimization method. In the application, the cycle analysis is conducted to determine mass flow rates, pressures, and temperatures, which is followed by the exergy and cost analyses to determine exergy flow rates and efficiencies, and capital costs, respectively. In addition, design and operation conditions are determined to maximize the exergy efficiency or minimize the annual total cost based on the results of the cycle, exergy, and cost analyses. Through a numerical study, it turns out that the proposed systems approach enables one to conduct the thermoeconomic analysis and optimization efficiently.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In