Full Content is available to subscribers

Subscribe/Learn More  >

Gas Turbine Fogging Technology — A State-of-the-Art Review: Part I — Inlet Evaporative Fogging, Analytical and Experimental Aspects

[+] Author Affiliations
R. K. Bhargava

Jacobs Engineering Group, Inc., Houston, TX

C. B. Meher-Homji

Bechtel Corporation

M. A. Chaker

Mee Industries, Inc., Monrovia, CA

M. Bianchi, F. Melino, A. Peretto

University of Bologna, Bologna, Italy

S. Ingistov

WCC/BP, Carson, CA

Paper No. GT2005-68336, pp. 71-82; 12 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 4: Turbo Expo 2005
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4727-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


Ambient temperature strongly influences gas turbine power output causing a reduction of between 0.50% to 0.90% for every 1°C of temperature rise. There is also a significant increase in the gas turbine heat rate as the ambient temperature rises, resulting in an increased operating cost. As the increase in power demand is usually coincident with high ambient temperature, power augmentation during the hot part of the day become important for independent power producers, cogenerators and electric utilities. Evaporative and overspray fogging are simple, proven and cost effective approaches for recovering lost gas turbine performance. A comprehensive review of the current understanding of the analytical and experimental and practical aspects of high-pressure inlet fogging technology is provided. A discussion of analytical and experimental results relating to droplet dynamics, factors affecting droplet size, and inlet configuration effects on inlet evaporative fogging are covered in this paper. Commonly used fogging nozzles are also described and experimental findings presented.

Copyright © 2005 by ASME
Topics: Gas turbines



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In