0

Full Content is available to subscribers

Subscribe/Learn More  >

Flashing Hammer Phenomenon in Rapid Liquid-Liquid Contact

[+] Author Affiliations
Tatsuya Koga, Tomoji Takamasa, Tatsuya Hazuku, Norihiro Fukamachi

Tokyo University of Mercantile Marine, Tokyo, Japan

Akira Saito

Toyama National College of Maritime Technology, Shinminato, Toyama, Japan

Izuo Aya

National Maritime Research Institute, Katano, Osaka, Japan

Paper No. FEDSM2003-45277, pp. 2981-2987; 7 pages
doi:10.1115/FEDSM2003-45277
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

In a wall crack accident or loss-of-coolant accident (LOCA) in an advanced reactor with water filled containment, high pressure saturated water is discharged from the pressure vessel into the low-pressure, low-temperature water of the containment. The discharged saturated water causes flashing and generates steam. Steam is then condensed by the water in the containment. This paper describes our study of high pressure saturated water that rapidly contacts low-pressure, low-temperature water. The purpose of the study was to clarify the transient phenomena that occur when high pressure saturated water blows down from a pressure vessel into a water filled containment during a wall crack accident or LOCA in an advanced reactor. The experimental results revealed that flashing of high-pressure saturated water and a subsequent water hammer occurred under the specified experimental settings. Pressure peaked when steam generation or flashing occurred at the wall surface and the flashing steam condensed. After the peak, pressure oscillated and reached equilibrium condition in a short time. The pressure oscillation might have been caused by a balancing action between the flashing of high pressure saturated water and condensation of the steam generated by flashing in low-pressure, low-temperature water. To check the results of the experiments, numerical analyses were conducted. The numerical results cleared the mechanism behind flashing hammer phenomenon.

Copyright © 2003 by ASME
Topics: Hammers , Flashing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In