Full Content is available to subscribers

Subscribe/Learn More  >

Reynolds Stress Field of a Stronger Wall Jet Managed by a Streamwise Vortex: Effect of Periodic Perturbation

[+] Author Affiliations
Shinsuke Mochizuki, Hideo Osaka

Yamaguchi University, Ube, Japan

Seiji Yamada

Yamaguchi Pref. Institute of Technology, Ube, Japan

Paper No. FEDSM2003-45228, pp. 2661-2666; 6 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


Six Reynolds stress components were studied experimentally to understand evolution of streamwise vortex and a plane wall jet. It is seen that periodic perturbation are able to modify non-isotropic Reynolds stress field involved in the transport equation for streamwise vorticity. Modified Reynolds stress field accelerates development of vortex radius in spanwise direction. Interaction between streamwise vortex and spanwise eddies in the outer layer of the plane wall jet strengthen both velocity and length scales of large-scale eddies and increase streamwise momentum flux in enhancement of entrainment process.

Copyright © 2003 by ASME
Topics: Stress , Vortices



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In