0

Full Content is available to subscribers

Subscribe/Learn More  >

A Study on Resonance Impinging and Wall Jets

[+] Author Affiliations
Toshihiko Shakouchi, Takumi Maruyama, Toshitake Ando, Koichi Tsujimoto, Atsushi Watanabe

Mie University, Tsu-shi, Mie, Japan

Paper No. FEDSM2003-45226, pp. 2645-2652; 8 pages
doi:10.1115/FEDSM2003-45226
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

Various kinds of impinging jets are used widely in many industry fields, such as the cooling of a heated plate or electronic components, drying of textiles, film, and paper because of their high heat and mass transfer rates at and near the stagnation point. Many studies on impinging jets from circular and orifice nozzles have been made [1]–[6]. It is well known that as nozzle-plate spacing decreases considerably the heat transfer rate becomes much larger, for example the maximum heat transfer rate of a circular impinging air jet with a low nozzle-plate spacing h/d = 0.1 (d: nozzle exit diameter) and Reynolds number Re = um d/ν = 2.3 × 104 is about 2.17 times of that for h/d = 0.2, but at the same time the flow resistance or operating power of the nozzle-plate system increases considerably. In order to improve or enhance the heat transfer rate, it is needed to increase the impinging mean and fluctuating velocities without increasing the operating power. To achieve this object it is considered to use a resonance jet. In this paper, the flow, acoustic and heat transfer characteristics of resonance free, impinging and wall jets are made clear experimentally. Moreover, flow visualization of the water jet flow by a tracer method is also made to examine the vortex structure at the shear layer and inside the resonance room. As a result, the heat transfer rate of the impinging jet by a resonance nozzle can be improved and enhanced considerably.

Copyright © 2003 by ASME
Topics: Resonance , Jets

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In