0

Full Content is available to subscribers

Subscribe/Learn More  >

Experiments and Modeling in Bubbly Flows at Elevated Pressures

[+] Author Affiliations
R. Kumar

University of Central Florida, Orlando, FL

T. A. Trabold, C. C. Maneri

Lockheed Martin Corporation, Schenectady, NY

Paper No. FEDSM2003-45793, pp. 1829-1839; 11 pages
doi:10.1115/FEDSM2003-45793
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

Measurements of local void fraction, rise velocity and bubble diameter have been obtained for cocurrent, wall-heated, upward bubbly flows in a pressurized refrigerant. The instrumentation used was the gamma densitometer and the hot-film anemometer. Departure bubble size and bulk size measurements were also made and correlated with appropriate parameters. Flow visualization techniques have also been used to understand the two-phase flow structure and the behavior of the bubbly flow for different bubble shapes and sizes, and to obtain the rise velocity. Such insight, coupled with quantitative local and averaged data on void fraction and bubble size at different pressures, has aided in developing bubbly flow models applicable to heated two-phase flows at high pressure.

Copyright © 2003 by ASME
Topics: Bubbly flow , Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In