Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Near-Wall Bubble Clustering Behaviors in Bubbly Channel Flow (Keynote)

[+] Author Affiliations
Soo-Hyun So, Shu Takagi, Akiko Fujiwara, Yoichiro Matsumoto

University of Tokyo, Tokyo, Japan

Paper No. FEDSM2003-45387, pp. 1531-1538; 8 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


The turbulence properties of gas-liquid bubbly flows and the near-wall bubble clustering behaviors are investigated for upward flow in a rectangular channel. Bubble size distributions are well-controlled and the flow with mono-dispersed 1mm-diameter and that with 1–4mm diameter bubbles are compared. Bubble size, turbulent properties of liquid phase and the bubble cluster motion were measured using image-processing technique, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV), respectively. To create the mono-dispersed small bubbles by the bubble generator, being made of stainless steel pipes, a small amount of surfactant (20ppm of 3-pentanol) was added into the flow. In this study, experiments with three different bulk Reynolds numbers (1350, 4100, 8200) were conducted with void fractions less than 0.6% in the fluid with/without the surfactant. In all cases with surfactant, there was a very high accumulation of bubbles near the wall. The local void fraction has a wall-peak distribution and the horizontal bubble clusters are formed near the wall. As a result, the local mean velocity of the liquid phase becomes larger near the wall due to the driving force of buoyant bubbles and the stream-wise turbulent intensity in the vicinity of the wall was enhanced. On the other hand, the turbulent fluctuations and Reynolds stress are remarkably suppressed in the other region. At the Reynolds number of 8200, the bubble cluster was investigated. Experimental observation showed that the bubble cluster changes its shape in time and that the shape change is caused by the difference of the rising velocity between the cluster center and the both ends. The clusters accelerated the mean streamwise velocity near the wall, thus the mean velocity profile of the liquid phase becomes flattened. It is suggested that the highly concentrated bubbles in the vicinity of the wall disturb the transport of turbulence energy produced in the wall shear layer toward the center of channel. Moreover, in the middle of channel, the turbulence structure is governed by pseudo-turbulence induced by present bubbles.

Copyright © 2003 by ASME
Topics: Bubbles , Channel flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In