0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Free Surface Deformation in Water Tank

[+] Author Affiliations
Fumio Shimizu, Kiyoshi Hatakenaka, Kazuhiro Tanaka

Kyushu Institute of Technology, Fukuoka, Japan

Hiroshi Shigefuji, Takeshi Shimizu

TOTO, Ltd., Kanagawa, Japan

Paper No. FEDSM2003-45386, pp. 1525-1530; 6 pages
doi:10.1115/FEDSM2003-45386
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

A siphon phenomenon is one of gas/liquid two-phase flows including free surface deformation. Since the large-scale deformation of the free surface causes a loud noise, it is important to investigate the motion of the free surface. The purpose of the present study is to reproduce a siphon phenomenon in computer, and to analyze an internal flow field of the siphon phenomenon. An oscillating flow in two-dimensional U-tube was simulated to verify our computational codes, and good agreement compared with the theoretical period was obtained. After that, the numerical reproduction of a siphon phenomenon was succeeded and the behavior of the free surface was captured reasonably.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In