Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Bubbly Flow in a Vertical Pipe Using Ultrasonic Doppler Method

[+] Author Affiliations
Hideki Murakawa, Hiroshige Kikura, Masanori Aritomi

Tokyo Institute of Technology, Tokyo, Japan

Michitsugu Mori

Tokyo Electric Power Company, Yokohama, Japan

Paper No. FEDSM2003-45384, pp. 1511-1516; 6 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


In order to clarify the microscopic flow structure, the ultrasonic Doppler method was applied to the measurement of two-phase bubbly flow in vertical pipe (i.d.50mm). Liquid flow structure might strongly be influenced by the characteristic of the injected bubbles, i.e. bubbles’ size and void fraction. In this study, a bubble generator was newly designed with the purpose to control the bubble size and void fraction, independent of liquid main-flow rate. The experiment was performed at z/d = 66 from the bubble generator. Liquid flow rates were of the Reynolds numbers ranging from Rem = 3700 to 6200. The gas flow rate was constant at JG = 0.00348(m/s) at the measurement position. By analyzing the bubbles’ picture, it was confirmed that bubble size distribution and average bubble size were almost constant if the liquid flow rate were changed. The ultrasonic Doppler method has the capability of measuring the instantaneous velocity profiles of both phases at the same time. By processing the data based on pattern recognition, the recorded data can be classified to several groups. Using this method, the authors have tried to measure the bubbly flow in rectangular channel. In the present study, the application of this method to bubbly flow in circular pipe was satisfactory to obtain the liquid velocity distribution in bubbly flow and surrounding bubbles. From these results, it was clarified that velocity profile in bubbly flow in circular pipe has a maximum value near the pipe wall. Furthermore, velocity profiles around the bubble are influenced by leading bubbles.

Copyright © 2003 by ASME
Topics: Bubbly flow , Pipes



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In