Full Content is available to subscribers

Subscribe/Learn More  >

Two-Phase Flow Through Square and Circular Microchannels: Effect of Channel Geometry

[+] Author Affiliations
Peter M.-Y. Chung, Masahiro Kawaji

University of Toronto, Toronto, Ontario, Canada

Akimaro Kawahara

Kumamoto University, Kumamoto, Japan

Yuichi Shibata

Ibaraki National College of Technology, Hitachinaka-shi, Ibaraki-ken, Japan

Paper No. FEDSM2003-45377, pp. 1459-1467; 9 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in microchannels. A mixture of water and nitrogen gas was pumped through a 96 μm × 96 μm square microchannel and the flow pattern, void fraction and pressure drop data were obtained and compared with those previously obtained in a 100 μm circular microchannel. The frictional pressure drop was determined from the measured total pressure drop, and the two-phase flow pattern and void fraction were determined from image analysis of the video recordings. In the square channel, 136 runs were performed over a range of 0.09 ≤ jG,AVG ≤ 62 m/s for the average superficial gas velocity and 0.01 ≤ jL ≤ 4 m/s for the superficial liquid velocity. The frictional pressure drop data showed that the calculations based on a separated–flow model were best at estimating the frictional pressure drop for both microchannels. No particular effect of the channel shape was found for the two-phase frictional pressure drop. The void fraction-to-volumetric quality relationship was also found to be similar for both shapes of microchannels, exhibiting an exponential increase in void fraction with increasing volumetric quality. The empirical correlation that describes the void fraction-to-volumetric quality relationship for the square microchannel was developed earlier from the measured data for the circular microchannel. Observations of the recorded images indicated the two-phase flow patterns to be primarily intermittent with liquid and gas slugs. The liquid film surrounding the gas core displayed a smooth or ring-like structure. The probability of each interfacial structure occurring was examined in detail to develop a novel flow pattern map consisting of four regions named slug-ring flow, ring-slug flow, multiple flow and semiannular flow. Between the square and circular microchannels, the two-phase flow maps exhibited transition boundaries that were shifted depending on the channel shape. The region of ring-slug flow that appears in the circular microchannel collapsed in the square microchannel, possibly due to the suppression of the liquid-ring film in the corners of the square channel.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In