Full Content is available to subscribers

Subscribe/Learn More  >

Studies on Gas-Phase Turbulence Modification in Vertical Upward Annular Flow

[+] Author Affiliations
Kenji Yoshida, Hidenobu Tanaka, Isao Kataoka

Osaka University, Suita, Osaka, Japan

Keizo Matsuura

Nuclear Fuel Industries, Ltd., Osaka, Japan

Paper No. FEDSM2003-45375, pp. 1445-1452; 8 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


Experimental and numerical studies were made to investigate the effects of wavy interface on the liquid film to gas-phase turbulence modification of air-water annular flow in a vertically arranged round tube. By using the constant temperature hotwire anemometer, time-averaged axial velocity profiles, turbulence fluctuation profiles, energy spectrum and auto-correlation coefficient for fluctuation velocity component of gas-phase axial velocity were precisely measured. The liquid film thickness was also measured by using point-electrode resistivity probe to make clear the time-averaged liquid film thickness and wave height moving on the liquid film. Direct observations using high speed video camera were also added to make clear the dynamic behavior and propergating velocity of ripple or disturbance waves on liquid film flow. Numerical simulations for gas-phase turbulence in annular flow considering the effect of wavy interface of liquid film flow were also carried out. Liquid film flow was modeled to be the wall surface roughness of interfacial wave height moving with the interfacial velocity. The roughness and moving velocity of the modeled liquid film for computational condition were provided by the present experimental results. Time-averaged velocity profiles and fluctuation velocity profiles were calculated with standard k-ε model. Numerical results were generally consistent with the experimental results obtained in the present study.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In