Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Simulation of Swirling Two-Phase Flow in BWR Steam-Water Separator and Its Optimization

[+] Author Affiliations
Haruo Terasaka, Sensuke Shimizu, Minoru Kawahara

Tohoku University, Sendai, Japan

Paper No. FEDSM2003-45185, pp. 1371-1378; 8 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


An advanced numerical method based on the two-fluid model has been developed. The solution method presented here is an extension of the SIMPLEST scheme, a fully implicit scheme for single-phase flow analysis. It is robust and unconditionally stable, and therefore it enables us to use a very large time step size. This feature is suitable for steady and/or slow transient flow analyses. Furthermore, it enhances numerical stability during rapid transient calculations. By using this method, swirling gas-liquid flow in a steam-water separator of Boiling Water Reactors (BWRs) was calculated and the hydrodynamics characteristics were investigated for optimization.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In