Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Methodology for Large-Eddy Simulation of Tip-Clearance Flows

[+] Author Affiliations
Donghyun You, Meng Wang, Parviz Moin

Stanford University, Stanford, CA

Rajat Mittal

George Washington University, Washington, D.C.

Paper No. FEDSM2003-45395, pp. 1139-1147; 9 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


A large-eddy simulation (LES) solver which combines an immersed-boundary technique with a curvilinear structured grid has been developed to study the temporal and spatial dynamics of an incompressible rotor tip-clearance flow. The overall objective of these simulations is to determine the underlying mechanisms for low-pressure fluctuations downstream of the rotor near the endwall. Salient features of the numerical methodology, including the mesh topology, the immersed boundary method, the treatment of numerical instability for non-dissipative schemes on highly skewed meshes, and the parallelization of the code for shared memory platforms are discussed. The computational approach is shown to be capable of capturing the evolution of the highly complicated flowfield characterized by the interaction of distinct blade-associated vortical structures with the turbulent endwall boundary layer. Simulation results are compared with experiments and qualitative as well as quantitative agreement is observed.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In