0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Flow Analysis of the Stator-Rotor Interaction in an Axial Flow Fan

[+] Author Affiliations
J. Fernández Oro, K. Argüelles Díaz, C. Santolaria Morros, R. Ballesteros Tajadura

Universidad de Oviedo, Gijón, Asturias, Spain

Paper No. FEDSM2003-45394, pp. 1131-1138; 8 pages
doi:10.1115/FEDSM2003-45394
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

In the usual operation of turbomachinery, some unsteady flow phenomena appear due to the non uniformity of the flow inside the rotor, when observed in the fixed reference frame. These phenomena are often related to the unsteady character of the pressure and velocity fields, which produce oscillating forces on the blades, superimposed to the steady force. These oscillating forces are the main mechanism of noise generation, which appear even at a constant rotational speed and at flow rates where the performance curves are stable. In axial turbomachines, the interaction is due to relative motion between the static and rotating blade rows. Considering the case of a fixed blade row (stator) placed upstream of the rotor, the non uniform flow leaving those blades (usually referred as IGV blades) is observed as an unsteady flow by the rotor blades. The effect of this interaction is the generation of unsteady forces on the rotor blades, which generate vibrations (risk of fatigue failure) and noise, and non-uniformity and unsteadiness of the pressure field, that propagates as an acoustic wave. The first part of this work is a brief description of a URANS numerical modeling of the unsteady flow characteristics of a one-stage subsonic axial flow fan with a reaction degree greater than 1. The focus is placed on the statorrotor interaction performance. Both 2D and 3D models of the fan, with 13 IGV’s and 9 rotor blades, were developed and an unsteady simulation was achieved to carry out the main characteristics of the flow inside the turbomachine. Once the actuating forces are determined, the influence of the radial position, the operating conditions and the distance of the fixed and the rotating blade rows is also analyzed. The final part of the paper is focused over the identification, through the definition of deterministic stresses — related to the characteristic blade-passage frequency of every row — that provoke the interaction between fixed and rotating blade rows and its evolution through time. The object is to obtain, in a stress tensor form, the contribution of the velocity field, that is changing because of the sucessive relative positions between blade rows, to the pressure distribution over the blade surfaces in the interior of the stage. Finally, a map of deterministic stresses and even, deterministic kinetic energy, can be obtained to show the influence of the blade rows in the interaction, unsteady phenomena.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In