Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Wake Passing on a Flow Separation in a Low Pressure Turbine Cascade

[+] Author Affiliations
Michael J. Brear

University of Melbourne, Melbourne, VIC, Australia

Howard P. Hodson

Cambridge University, Cambridge, UK

Paper No. FEDSM2003-45580, pp. 1043-1050; 8 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


This paper describes an investigation into the effect that passing wakes have on a separation bubble that exists on the pressure surface and near the leading edge of a low pressure turbine blade. Previous experimental studies have shown that the behaviour of this separation is strongly incidence dependent and that it responds to its disturbance environment. The results presented in this paper examine the effect of wake passing in greater detail. Two dimensional, Reynolds averaged, numerical predictions are first used to examine qualitatively the unsteady interaction between the wakes and the separation bubble. The separation is predicted to consist of spanwise vortices whose development is in phase with the wake passing. However, comparison with experiments shows that the numerical predictions exaggerate the coherence of these vortices and also overpredict the time-averaged length of the separation. Nonetheless, experiments strongly suggest that the predicted phase locking of the vortices in the separation onto the wake passing is physical.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In