0

Full Content is available to subscribers

Subscribe/Learn More  >

Rapid Experimentation in Complex Internal Flow Passages Using SLA and MRV

[+] Author Affiliations
Christopher J. Elkins, John K. Eaton

Stanford University, Stanford, CA

Ryan B. Wicker

University of Texas at El Paso, El Paso, TX

Paper No. FEDSM2003-45576, pp. 1021-1027; 7 pages
doi:10.1115/FEDSM2003-45576
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

Designing complex internal cooling passages is extremely difficult without detailed information about the flow behavior due to the presence of separated flow zones and strong secondary flows. This paper describes a new approach to designing internal flow passages called Rapid Iterative Design Using Experimentation (RIDUE). RIDUE utilizes rapid prototyping (RP) manufacturing to quickly build an accurate model of a complex internal flow passage and magnetic resonance velocimetry (MRV) to measure the full three dimensional velocity field. Because both techniques offer very fast turnaround, it is feasible to conduct iterative design with a cycle time of 1–2 days. RIDUE is demonstrated using a generic turbine blade internal cooling passage with four serpentine channels. Two channels have rectangular cross-section and two are square. In each channel, two of the four walls have ribs (also called turbulators) angled at 45 degrees to the main flow direction. Two models based on the generic geometry are studied, each with different turbulator cross-sections, one square and one rounded. Both models were built using a stereo lithography apparatus. MRV provided three-component velocity vectors for flow at a Reynolds number of 10,000 based on the hydraulic diameter of the first passage. Sample vector fields are presented to illustrate the detail with which the flow can be investigated. Although little difference is seen in the flows between the two models, it is demonstrated that through its use of RP processes and the MRV measurement technique, RIDUE is a viable technique for modern internal passage design.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In