0

Full Content is available to subscribers

Subscribe/Learn More  >

Brownian Dynamics Simulation in a Turbulent Channel Flow

[+] Author Affiliations
Vincent E. Terrapon, Yves Dubief, Parviz Moin, Eric S. G. Shaqfeh

Stanford University, Stanford, CA

Paper No. FEDSM2003-45680, pp. 773-780; 8 pages
doi:10.1115/FEDSM2003-45680
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

The dynamics of different bead-spring models is investigated in a turbulent channel flow. In particular, the FENE, the FENE-P and the FENE multichain models are compared. In the case of the FENE-P model, both the Brownian Dynamics and the constitutive equations are used. It is shown that the different models produce qualitatively similar results for the mean extension and the mean stresses. This qualitative behaviour is also reproduced for different extensibility parameters. It is also found that the action of polymers is confined in the near wall region where the polymers are mainly oriented in the streamwise direction.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In