Full Content is available to subscribers

Subscribe/Learn More  >

Reynolds Stress Modeling for Drag Reducing Viscoelastic Flows

[+] Author Affiliations
Richard Leighton, David T. Walker, Todd Stephens, Gordon Garwood

Veridian Systems Division, Inc., Ann Arbor, MI

Paper No. FEDSM2003-45655, pp. 735-744; 10 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


A Reynolds-stress transport equation model for turbulent drag-reducing viscoelastic flows, such as that which occurs for dilute polymer solutions, is presented. The approach relies on an extended set of Reynolds-Averaged Navier-Stokes equations which incorporate additional polymer stresses. The polymer stresses are specified in terms of the mean polymer conformation tensor using the FENE-P dumbbell model. The mean conformation tensor equation is solved in a coupled manner along with the Navier-Stokes equations. The presence of the polymer stresses in the equations of motion results in additional explicit polymer terms in the Reynolds-stress transport equations, as well as implicit polymer effects in the pressure-strain redistribution term. Models for both the explicit and implicit effects have been developed and implemented in a code suitable for boundary layer, rectangular channel and pipe-flow geometries. Calibration and validation is has been carried out using results from recent direct numerical simulation of viscoelastic turbulent flow.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In