Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Effective Viscosity in Bubbly Flow Using Free-Falling Sphere

[+] Author Affiliations
Hiroshi Oiwa, Yuichi Murai, Masa-aki Ishikawa, Fujio Yamamoto

Fukui University, Fukui-shi, Japan

Paper No. FEDSM2003-45644, pp. 639-645; 7 pages
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME


Effective viscosity of bubbly two-phase flow is experimentally investigated by means of the falling sphere method. The terminal falling velocity of the sphere is measured by image processing to calculate the relative viscosity of the two-phase flow to the single-phase flow. The measurement results show that the effective viscosity is reduced for a range from 0 to 2% of void fraction as the shearing Weber number increases. This fact implies that the reduction of the effective viscosity is governed by the deformation of the bubbles, and the mechanism is explained by the interruption of the shear stress transfer in the two-phase medium.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In