0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Coal Ash Particle Behavior in Entrained Flow Coal Gasifier

[+] Author Affiliations
Hiroaki Watanabe, Kazuyoshi Ichikawa, Maromu Otaka, Jun Inumaru

Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan

Paper No. FEDSM2003-45744, pp. 551-558; 8 pages
doi:10.1115/FEDSM2003-45744
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

The objective of this study is to develop an evaluation tool for a design and performance of a coal gasifier by a numerical simulation technique. In the present paper, a gas-particle two phase reacting flow calculation is carried out for a prediction of phenomena in an entrained flow coal gasifier due to coal and ash particles behavior, such as ash deposition on the wall. A transportation of the coal particles is modeled via a Lagrangian manner. The ash particle adhesion on the wall of the gasifier is discriminated by an empirical ash adhesion model based on a liquid phase fraction concept in the ash particle. The gas phase properties are calculated by three dimensional time-mean Eulerian conservation equations. The turbulent flow field is determined by the k-ε two equations model. Radiative heat transfer is calculated by the discrete transfer radiation method. Coal gasification reaction model is composed of three chemical processes in the current model: a pyrolysis, a char gasification and gas phase reactions. 2 tons/day (t/d) air-blown pressurized entrained flow coal gasifier, which has been constructed and operated by Central Research Institute of Electric Power Industry (CRIEPI) was targetted. As a result, a relationship between an operating condition (air ratio) of the gasifier and the gasifier performance is presented. The trend of the ash deposition on the gasifier inner wall is also presented. Comparison between the computational and the experimental results shows that the most feature of the gasifier performance and the profile of the ash deposition have been captured by the present model. It was confirmed that the numerical simulation approach is very useful for the assessment of gasifier performance and operation support.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In