0

Full Content is available to subscribers

Subscribe/Learn More  >

Noise Due to Extreme Bubble Deformation Near Inception of Tip Vortex Cavitation

[+] Author Affiliations
Jin-Keun Choi, Georges L. Chahine

Dynaflow, Inc., Jessup, MD

Paper No. FEDSM2003-45313, pp. 207-214; 8 pages
doi:10.1115/FEDSM2003-45313
From:
  • ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference
  • Volume 1: Fora, Parts A, B, C, and D
  • Honolulu, Hawaii, USA, July 6–10, 2003
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3696-7 | eISBN: 0-7918-3673-8
  • Copyright © 2003 by ASME

abstract

A study on the tip vortex cavitation inception based on extreme bubble deformation and jet noise is presented. First, two preliminary experiments are performed to provide a correlation between the numerically computed splitting/jet noise and the measured noise. The bubble behavior and pressure signal predicted by the axisymmetric method are compared with those recorded simultaneously by using a high-speed video camera and hydrophone. Then, numerical studies on the bubble behavior in the tip vortex flow field are conducted. The tip vortex flow near a hydrofoil is provided by a viscous flow computation, and the bubble behavior is simulated by an axisymmetric boundary element method based on the provided vortex flow field. The characteristics of the bubble behavior and jet noise over a range of cavitation numbers are investigated. The effect of initial bubble nucleus size and the Reynolds number effect of the tip vortex flow on the tip vortex cavitation inception, the bubble behavior including its splitting, and jet noise are also discussed.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In