Full Content is available to subscribers

Subscribe/Learn More  >

Periodic Heating of an Anisotropic Superlattice With Thermal Boundary Resistance

[+] Author Affiliations
Jason R. Foley, C. Thomas Avedisian

Cornell University, Ithaca, NY

Paper No. IMECE2002-32443, pp. 285-293; 9 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 1
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-3632-0 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


The conduction of heat from a modulated heat source of finite size is analyzed for a semi-infinite solid in contact with the adjacent gas. The solid is a semi-infinite layered composite structure consisting of a superlattice (of thickness Δ) grown on a substrate. Using partitioned matrices that arise naturally from boundary conditions, a closed form solution for the temperature distribution in the solid and gas is found for the limit of conduction-dominated heat transport in the gas. The general case is analyzed in which each layer of a superlattice can have different anisotropic thermal conductivities as well as different thermal boundary resistances between the individual layers due to the growth process. Limits of this most general case are discussed in which all “A” and all “B” layers are themselves the same. The temperature field that arises from the general problem is used to compute probe beam deflections in the gas for the photothermal deflection spectroscopy (PDS) technique for measuring the thermal conductivity. Results are presented to show how probe beam deflection components, and the effective properties of the superlattice, are influenced by the number of periods of the superlattice, thermal properties of the superlattice layers, and the presence or absence of a thermal boundary resistance between the layers.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In