0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Seat System Performance Related to Injury of Rear Seated Children and Infants in Rear Impacts

[+] Author Affiliations
Kenneth J. Saczalski

Environmental Research & Safety Technologists, Inc., Newport Beach, CA

Joseph Lawson Burton, Paul R. Lewis, Jr.

Burton & Associates, Alpharetta, GA

Keith Friedman

Friedman Research Corporation, Santa Barbara, CA

Todd K. Saczalski

T. K. S. Consulting, Sedona, AZ

Paper No. IMECE2002-33517, pp. 163-197; 35 pages
doi:10.1115/IMECE2002-33517
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics and Biomedical Technology
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3627-4 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Since 1996 the NHTSA has warned of the airbag deployment injury risk to front seated children and infants, during frontal impact, and they have recommended that children be placed in the rear seating areas of motor vehicles. However, during most rear impacts the adult occupied front seats will collapse into the rear occupant area and, as such, pose another potentially serious injury risk to the rear seated children and infants who are located on rear seats that are not likely to collapse. Also, in the case of higher speed rear impacts, intrusion of the occupant compartment may cause the child to be shoved forward into the rearward collapsing front seat occupant thereby increasing impact forces to the trapped child. This study summarizes the results of more than a dozen actual accident cases involving over 2-dozen rear-seated children, where 7 children received fatal injuries, and the others received injuries ranging from severely disabling to minor injury. Types of injuries include, among others: crushed skulls and brain damage; ruptured hearts; broken and bruised legs; and death by post-crash fires when the children became entrapped behind collapsed front seat systems. Several rear-impact crash tests, utilizing sled-bucks and vehicle-to-vehicle tests, are used to examine the effects of front seat strength and various types of child restraint systems, such as booster seats and child restraint seats (both forward and rearward facing), in relation to injury potential of rear seated children and infants. The tests utilized sedan and minivan type vehicles that were subjected to speed changes ranging from about 20 to 50 kph (12 to 30 mph), with an average G level per speed change of about 9 to 15. The results indicate that children and infants seated behind a collapsing driver seat, even in low severity rear impacts of less than 25 kph, encounter a high risk of serious or fatal injury, whether or not rear intrusion takes place. Children seated in other rear seat positions away from significant front seat collapse, such as behind the stronger “belt-integrated” types of front seats or rearward but in between occupied collapsing front seat positions, are less likely to be as seriously injured.

Copyright © 2002 by ASME
Topics: Wounds

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In