0

Full Content is available to subscribers

Subscribe/Learn More  >

Modified Stewart Platform for Spacecraft Thruster Vector Control

[+] Author Affiliations
Mehrdad N. Ghasemi-Nejhad, Kathleen M. Doherty

University of Hawaii at Manoa, Honolulu, HI

Paper No. IMECE2002-39032, pp. 261-268; 8 pages
doi:10.1115/IMECE2002-39032
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Adaptive Structures and Materials Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-3625-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Adaptive or intelligent structures which have the capability for sensing and responding to their environment promise a novel approach to satisfying the stringent performance requirements of future space missions. This paper introduces an intelligent modified Stewart platform as an adaptive thruster mount structure with precision positioning and active vibration suppression capabilities for use in space satellites as an intelligent thruster vector control platform. The intelligent thruster mount would utilize piezoelectric sensors and actuators for precision positioning and active vibration suppression to provide fine-tuning of position tolerance for thruster alignment and low transmissibility of vibration to the satellite structure. Similar intelligent platform, introduced here, may be used for sensitive equipment aboard of the spacecraft to suppress the vibration that resonates throughout the spacecraft structure during a thruster firing, solar panel boom opening/reorientation, etc. This vibration renders sensitive optical or measurement equipment non-operational until the disturbance has dissipated. This intelligent system approach would greatly enhance mission performance by fine tuning attitude control, potentially eliminating the non-operational period as well as minimizing fuel consumption utilized for position correction. The configuration of the intelligent thruster mount system is that of a modified Stewart platform. This system is an intelligent tripod with two in-plane rotational degrees of freedom (2-DOF) for the top device-plate. Precision positioning of this structure is achieved using active members that extend or contract to tilt the upper device-plate where the thruster is mounted. An inverse analysis of a modified Stewart platform is employed to determine the required axial displacement of the active struts for the desired angular tilt of the upper device-plate. The active struts can participate in precision positioning as well as vibration suppression of the upper device-plate where the thruster, i.e., the source of the unwanted vibrations and misalignment, is mounted. The proposed Thruster Vector Control (TVC) intelligent platform offers a promising method for achieving fine tuning of positioning tolerances of a thruster as well as minimizing the effects of the disturbances generated during thruster firing in spacecraft such as a satellite.

Copyright © 2002 by ASME
Topics: Space vehicles

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In