Full Content is available to subscribers

Subscribe/Learn More  >

An Analytical Model for a Clamped Isotropic Beam Under Thermal Effects

[+] Author Affiliations
Rodrigo F. A. Marques, Daniel J. Inman

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2002-33977, pp. 177-183; 7 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Adaptive Structures and Materials Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-3625-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


Structures and industrial equipment often operate in environments where temperature variations take place. Although thermal effects may be negligible in some cases, they have caused the unexpected failure of mechanical systems many times. Whether or not temperature has significant effects on the dynamical behavior of such machines and structures depends upon several aspects, amongst which are geometry, material properties and boundary conditions. In this paper we investigate the dynamical behavior of a clamped beam under the influence of a uniform, quasi-statically varying temperature field. An analytical model was used, based on Euler-Bernoulli’s beam theory with the introduction of the proper boundary conditions. Temperature effects are included in terms of an axial force that shows up when the beam tends to thermally expand, but this expansion is restrained by the clamping. Preliminary results do not agree with experimental data, since perfect clamping is difficult to achieve in practice. Finally the model is updated with the inclusion of axial and torsional springs connecting the beam to the support. The spring constants were calculated through optimization procedure to minimize the differences between the natural frequencies obtained from the analytical model and the corresponding experimental ones. Agreement with experimental results is reasonable up to the 4th mode of the beam. In the future, this analytical model is to be used for design and simulation of an active controller that accounts for temperature changes in the structure.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In