0

Full Content is available to subscribers

Subscribe/Learn More  >

Strain and Current Responses During Electron Flux Excitation of Piezoelectric Ceramics

[+] Author Affiliations
Philip C. Hadinata, John A. Main

University of Kentucky, Lexington, KY

Paper No. IMECE2002-39013, pp. 111-123; 13 pages
doi:10.1115/IMECE2002-39013
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Adaptive Structures and Materials Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-3625-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

The electric field induced strain in piezoelectric materials subjected to an electron flux is examined in this paper. An analysis using quantum mechanics indicates that stable and controllable strains with very low current draw should be achievable over a range of positive and negative control potentials. The model also predicts an instability in the internal electric field at larger negative potentials. The model was evaluated by observing the strain output of PZT5h plates subjected to an electron flux on one face and voltage inputs from a single electrode on the opposite face. The strain response and current flow were measured as a function of electrode potential and electron energy. All of the significant predictions of the model were verified by the experimental results. Further experiments were performed to examine the time response of the strain induced in the plate. It was found that the location and potential of the electron collector dramatically influences the dynamic response of the system.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In