0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Deformation of Field-Coupled Materials

[+] Author Affiliations
Pavel M. Chaplya, Geoffrey P. McKnight, Gregory P. Carman

University of California at Los Angeles, Los Angeles, CA

Paper No. IMECE2002-39009, pp. 103-109; 7 pages
doi:10.1115/IMECE2002-39009
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Adaptive Structures and Materials Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-3625-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

This article describes remarkable similarities in the nonlinear mechanical response of different active/smart materials despite fundamental differences in the underlying mechanisms associated with each material. Active/smart materials (i.e., piezoelectric (PZT-5H), magnetostrictive (Terfenol-D), and shape memory alloys (NiTi)) exhibit strong non-linear mechanical behavior produced by changing non-mechanical internal states such as polarization, magnetization, and phase/twin configuration. In active/smart materials the initial deformation proceeds linearly followed by a jump in strain associated with the transformation of an internal non-mechanical state. After the transformation, the mechanical response returns to linear elastic. Upon unloading, a residual strain is observed which can be recovered with the application of a corresponding external field (i.e., electric, magnetic, or thermal). Due to coupling between applied fields and non-mechanical internal states, mechanical deformation is also a function of applied external fields. At a critical applied field, the residual strain is eliminated, providing repeatable cyclic characteristics that can be used in passive damping applications. Even though different intrinsic processes (i.e., polarization, magnetization, and phase/twin variant composition) govern the deformation of each material, their macroscopic behavior is explained using a unified volume fraction concept. That is, the deformation of piezoelectric material is described in terms of the volume fraction of ferroelectric domains with polarization parallel or orthogonal to the applied load; the deformation of magnetostrictive materials is described in terms of the volume fraction of magnetic domains with magnetization parallel or orthogonal to the applied load; and the deformation of shape memory material is described in terms of the volume fraction of twin variants that are oriented favorably to the applied load. Although the qualitative behavior of each material is similar, the average magnitude of stress required to induce non-linearity varies from ~10 MPa for Terfenol-D to ~65 MPa for PZT-5H to ~300 MPa for NiTi shape memory alloy. It is hypothesized that a composite material made of these materials connected in series would exhibit passive damping over a wide range of applied stress.

Copyright © 2002 by ASME
Topics: Deformation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In