0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Electromechanical Transduction in Ionic Polymer Materials

[+] Author Affiliations
Kenneth Newbury, Donald J. Leo

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. IMECE2002-39008, pp. 47-57; 11 pages
doi:10.1115/IMECE2002-39008
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Adaptive Structures and Materials Systems
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-3625-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

A coupled, linear electromechanical model is developed for ionic polymer transducers. The model is based on the linear equations for a piezoelectric material. Integrating the equations over the geometry of the transducer produces a model of the electromechanical coupling of the polymer transducers as a function of fundamental material parameters and geometry. Explicit modeling of electromechanical coupling produces a model that is useful for analyzing sensing or actuation using ionic polymer transducers. Experiments on polymer samples verify the scaling of the model parameters as a function of sample length and width. The results also demonstrate the reciprocity of the electromechanical coupling. The symmetric model is expressed as a linear transformer which can be incorporated into system-level models for design of devices that utilize ionic polymer materials. The model is limited to linear operation at low-voltage with constant levels of material hydration.

Copyright © 2002 by ASME
Topics: Modeling , Polymers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In