Full Content is available to subscribers

Subscribe/Learn More  >

Vortex Tube Applications in Micro-Power Generation

[+] Author Affiliations
Selin Arslan, Bojan Mitrovic, Michael R. Muller

Rutgers University, Piscataway, NJ

Paper No. IJPGC2002-26056, pp. 945-952; 8 pages
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


The purpose of this paper is to study vortex tube performance characteristics and the use of vortex tubes to increase the total efficiency of power systems, especially micropower systems. A vortex tube is a device in which compressed air is made to swirl and separate into two low-pressure streams, one with higher temperature than the entry and the other lower. The lack of moving parts and electricity make the vortex tube attractive for a number of specialized applications where simplicity, robustness and reliability are desired. Vortex tubes are currently used for industrial cooling applications, separation technologies, and chemical analysis. It is well known that the temperature difference between the hot and cold sides of the vortex tube scales with the pressure drop. Also, at any pressure drop, the temperatures and flow rates are dependent on the flow fractions between the hot and cold sides. Data is available for large pressure drops, but this paper presents experimental results at low-pressure drops optimizing the operational modes for various applications. The micro-power systems under consideration include micro-turbines, which evolved out of automotive turbocharger technology. The use of vortex tubes in power systems has received some attention but the use of both the hot and cold streams has never been considered. In this work, we consider such dual use. As an example of an application, the vortex tube is considered in conjunction with a heat recovery steam generator (HRSG). The vortex tube splits the turbine exhaust flow into hotter and cooler streams. The cooler stream is still hot enough to supply all needed heat in the economizer section, leaving the hotter stream to increase the exit temperature from the superheater. In this way both the air leaving the HRSG and going to the steam turbine will have an increased enthalpy and cycle efficiencies are improved. In addition, steam turbine exit quality is increased.

Copyright © 2002 by ASME
Topics: Vortices



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In