Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamic Performance of Complex Gas Turbine Cycles

[+] Author Affiliations
Sanjay, B. N. Prasad

Regional Institute of Technology, Jamshedpur, JH, India

Onkar Singh

Harcourt Butler Technological Institute, Kanpur, UP, India

Paper No. IJPGC2002-26109, pp. 529-535; 7 pages
  • 2002 International Joint Power Generation Conference
  • 2002 International Joint Power Generation Conference
  • Scottsdale, Arizona, USA, June 24–26, 2002
  • Conference Sponsors: Power Division
  • ISBN: 0-7918-3617-7 | eISBN: 0-7918-3601-0
  • Copyright © 2002 by ASME


This paper deals with the thermodynamic performance of complex gas turbine cycles involving inter-cooling, re-heating and regeneration. The performance has been evaluated based on the mathematical modeling of various elements of gas turbine for the real situation. The fuel selected happens to be natural gas and the internal convection / film / transpiration air cooling of turbine bladings have been assumed. The analysis has been applied to the current state-of-the-art gas turbine technology and cycle parameters in four classes: Large industrial, Medium industrial, Aero-derivative and Small industrial. The results conform with the performance of actual gas turbine engines. It has been observed that the plant efficiency is higher at lower inter-cooling (surface), reheating and regeneration yields much higher efficiency and specific power as compared to simple cycle. There exists an optimum overall compression ratio and turbine inlet temperature in all types of complex configuration. The advanced turbine blade materials and coating withstand high blade temperature, yields higher efficiency as compared to lower blade temperature materials.

Copyright © 2002 by ASME
Topics: Gas turbines , Cycles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In