0

Full Content is available to subscribers

Subscribe/Learn More  >

Near-Critical Swirling Flow of Viscoelastic Fluids in a Pipe

[+] Author Affiliations
Zvi Rusak, John A. Tichy

Rensselaer Polytechnic Institute, Troy, NY

Paper No. FEDSM2002-31107, pp. 1261-1268; 8 pages
doi:10.1115/FEDSM2002-31107
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

The interaction between flow inertia and elasticity in high Reynolds number, axisymmetric, and near-critical swirling flows of an incompressible and viscoelastic fluid in a straight circular pipe is studied. The stresses of the viscoelastic fluid are described by the Oldroyd-B constitutive model (representing the low constant-viscosity Boger fluids). A nonlinear small-disturbance analysis is developed from the governing equations of motion in order to understand the complicated interactions between flow inertia and fluid viscosity and elasticity. The effects of the fluid viscosity, relaxation time, and retardation time on the flow development in the pipe and on the critical swirl for vortex breakdown are explored. It is found that increasing the relaxation time with other parameters being fixed increases the critical swirl for vortex breakdown whereas increasing the retardation time with other parameters being fixed decreases the critical swirl for breakdown. Also, when the relaxation and retardation times are the same the critical swirl is the same as that of a Newtonian fluid. The viscoelastic characteristic times also effect the size of the flow perturbation. These results may explain the changes in the appearance of breakdown zones as function of Reynolds numbers (swirl level) that have been recently observed in the experiments by Stokes et al. (2001) where Boger fluids were used. This work extends for the first time the theory of vortex stability and breakdown to include effects of non-Newtonian fluids.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In