Full Content is available to subscribers

Subscribe/Learn More  >

Werlé-Legendre Separation in a Hydraulic Machine Draft Tube

[+] Author Affiliations
S. Mauri, J.-L. Kueny, F. Avellan

Swiss Federal Institute of Technology, Lausanne, Switzerland

Paper No. FEDSM2002-31196, pp. 885-891; 7 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


The three-dimensional turbulent flow in a compact hydraulic machine elbow draft tube is numerically investigated for several operating conditions, covering an extended range around the best efficiency point. Comparisons with the experimental data are presented as validation. The interest is focused on the experimentally observed pressure recovery drop occurring near the best efficiency point. The flow is first analyzed locally by means of a topological analysis, then globally with an energetic approach. The study provides evidence for the role played by a Werlé-Legendre separation originating in the bend. The separation is due to the contrasting flow angles imposed by the blades, and the angle resulting from the secondary flow.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In