Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Study on the Structure of Tip Clearance Flow in a Highly Forward-Swept Axial-Flow Fan

[+] Author Affiliations
Gong Hee Lee, Je Hyun Baek

Pohang University of Science and Technology, Pohang, Korea

Paper No. FEDSM2002-31186, pp. 799-806; 8 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


A three-dimensional Navier-Stokes analysis was performed to investigate the tip clearance flows in a highly forward-swept axial flow fan operating at design condition. The numerical solution was based on a fractional step method, and two-layer k-ε model was used to obtain the eddy viscosity. The tip leakage vortex decayed very quickly inside the blade passage and, thus, no distinct leakage vortex appeared behind trailing edge. The main reason was the severe decrease of the streamwise velocity of the vortex. Also the interaction of the vortex with the casing boundary layer and the through-flow were other possibilities of the fast decay of the vortex. Comparison between the numerical results and LDV measurements data indicated that the complex viscous flow patterns inside the tip region as well as the wake flow could be properly predicted, but more refinement in numerical aspects are needed.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In