Full Content is available to subscribers

Subscribe/Learn More  >

A Detailed Experimental Investigation of a Perforated Heat Transfer Surface Applied to Gas Turbine Recuperators

[+] Author Affiliations
Juan C. Adams, Peter T. Ireland

University of Oxford, Oxford, UK

Martin Cerza

U.S. Naval Academy, Annapolis, MD

James Oswald

Rolls-Royce plc, Coventry, UK

Paper No. GT2003-38740, pp. 1071-1080; 10 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


An effort is made to explain and improve the understanding of the mechanisms behind the thermo-hydraulic performance of perforated extended surfaces used in compact heat exchangers in the laminar flow regime (ReD = 400–2500). A transient liquid crystal technique, which uses Helium as operating fluid, together with digital image photographic processing have been used to provide measurements of local heat transfer coefficients for this geometry. This work has found that through the use of perforated surfaces there exists a local heat transfer enhancement benefit. It has also been found that although perforations cause a partial restart of the thermal boundary layer, a significant overall surface heat transfer enhancement may not be achieved over plain surfaces. It was also found that the distance between the fin’s leading edge and the point of last significant enhancement resulting from a perforation, linearly depends on Reynolds number. Local heat transfer coefficient measurements were validated by single blow experimentation of similar geometries. The transient single blow technique used the curve-matching method to compare predicted and experimental temperatures.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In