Full Content is available to subscribers

Subscribe/Learn More  >

Discharge Coefficients of Rotating Short Orifices With Radiused and Chamfered Inlets

[+] Author Affiliations
M. Dittmann, K. Dullenkopf, S. Wittig

University of Karlsruhe, Karlsruhe, Germany

Paper No. GT2003-38314, pp. 1001-1009; 9 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


The secondary air system of modern gas turbine engines consists of numerous stationary or rotating passages to transport the cooling air, taken from the compressor, to thermally high loaded components that need cooling. Thereby the cooling air has to be metered by orifices to control the mass flow rate. Especially the discharge behavior of rotating holes may vary in a wide range depending on the actual geometry and the operating point. The exact knowledge of the discharge coefficients of these orifices is essential during the design process in order to guarantee a well adapted distribution of the cooling air inside the engine. This is crucial not only for a safe and efficient operation but also fundamental to predict the component’s life and reliability. In this paper two different methods to correlate discharge coefficients of rotating orifices are described and compared, both in the stationary and rotating frame of reference. The benefits of defining the discharge coefficient in the relative frame of reference will be pointed out. Measurements were conducted for two different length-to-diameter ratios of the orifices with varying inlet geometries. The pressure ratio across the rotor was varied for rotational Reynolds numbers up to Reφ = 8:6 × 105 . The results demonstrate the strong influence of rotation on the discharge coefficient. An analysis of the complete data shows significant optimising capabilities depending on the orifice geometry.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In