0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigations of Dust Separation in the Internal Cooling Air System of Gas Turbines

[+] Author Affiliations
O. Schneider, H. J. Dohmen, F.-K. Benra

Gerhard-Mercator University Duisburg, Duisburg, Germany

D. Brillert

Siemens AG, Power Generation, Mülheim, Germany

Paper No. GT2003-38293, pp. 985-992; 8 pages
doi:10.1115/GT2003-38293
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

Improvements in efficiency and performance of gas turbines require a better understanding of the internal cooling air system which provides the turbine blades with cooling air. With the increase of cooling air passing through the internal air system, a greater amount of air borne particles is transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blockage. Blockage of only a few holes could have harmful effects on the cooling film surrounding the blade. As a result, a reduced mean time between maintenance or even unexpected operation faults of the gas turbine during operation could occure. Experience showed a complex interaction of cooling air under different flow conditions and its particle load. To get more familiar with all these influences and the system itself, a test rig has been built. With this test rig, the behaviour of particles in the internal cooling air system could be studied at realistic flow conditions compared to a modern, heavy duty gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. The test rig has been designed to give information about the quantity of separated particles at various critical areas of the internal air system [1]. The operation of the test rig as well as analysis of particles in such a complex flow system bear many problems, addressed in the previous paper [1]. New measurements and analysis methods give new and more accurate results, which will be shown in this paper. Furthermore the inspection of the test rig shows dust deposits at unexpected positions of the flow path. Theoretical studies to characterize the flow behaviour of the disperse phase in a continuous fluid using Lagrangian Tracking were also performed. A comparison between the numerical solution and the measurements will be shown in the paper.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In