Full Content is available to subscribers

Subscribe/Learn More  >

Development of a 2-D CFD Approach for Computing 3-D Honeycomb Labyrinth Leakage

[+] Author Affiliations
Dong-Chun Choi, David L. Rhode

Texas A&M University, College Station, TX

Paper No. GT2003-38238, pp. 965-975; 11 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


A new approach for employing a 2-D CFD model to approximately compute a 3-D flow field such as that in a honeycomb labyrinth seal was developed. The advantage of this approach is that it greatly reduces the computer resource requirement needed to obtain a solution of the leakage for the 3-D flow through a honeycomb labyrinth. After the leakage through the stepped labyrinth seal was measured, it was used in numerically determining the value of one dimension (DTF1) of the simplified geometry 2-D approximate CFD model. Then the capability of the 2-D model approach was demonstrated by using it to compute the 3-D flow that had been measured at different operating conditions, and in some cases different distance to contact values. It was found that very close agreement with measurements was obtained in all cases, except for that of intermediate clearance and distance to contact for two sets of upstream and downstream pressure. The 2-D approach developed here offers interesting benefits relative to conventional algebraic-equation models, particularly for evaluating labyrinth geometries/operating conditions that are different from that of the data employed in developing the algebraic model.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In