0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Dimensional Numerical Simulation of Burnout on Horizontal Surface in Pool Boiling

[+] Author Affiliations
Zoran V. Stosic

Framatome ANP GmbH, Erlangen, Germany

Vladimir D. Stevanovic

University of Belgrade, Belgrade, Yugoslavia

Paper No. FEDSM2002-31367, pp. 557-578; 22 pages
doi:10.1115/FEDSM2002-31367
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed under high heat fluxes, near to and at the occurrence of burnout conditions. Heat flux through the vessel bottom wall is varied and its influence on the pool boiling dynamics is analysed. Dynamics of vapour generation on the heating wall is modelled through the density of nucleation sites and the bubble residence time on the wall. The nucleation sites are determined by a random function. The applied numerical grid is able to represent the nucleation sites on the heating wall for both fresh (polished) and aged (rough) heaters at the atmospheric pool boiling conditions. Results are presented for short time period after the initiation of heat supply and vapour generation on the heating surface, as well as for quasi steady-state conditions after two seconds from pool boiling initiation. The results show a replenishment of the heating surface with water and partial surface wetting for lower heat fluxes, while heating surface dry-out is predicted for high heat fluxes. The influence of the density of nucleation sites and the bubble residence time on the wall on the pool boiling dynamics is investigated. Numerical simulations show that decrease of the density of nucleation sites and increase of bubble residence time on the heating surface (characteristics pertinent to fresh-polished heaters) lead to the reduction of critical heat flux values. Obtained results are in excellent agreement with the recent experimental investigations of the upward facing burnout conditions on the horizontal heated plate. Details of the developed numerical procedure are presented. The introduced method of random spatial and temporal generation of the vapour at the heated wall is a new approach. It enables the macroscopic representation of the population of microscopic vapour bubbles, which are generated at nucleation sites on the heater wall, and which burst through liquid micro-layer in thermal-hydraulic conditions close to the burnout. The applied numerical and modelling method has shown robustness by allowing stable calculations for wide ranges of applied modelling boiling parameters (density of nucleation sites and bubble residence time).

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In