Full Content is available to subscribers

Subscribe/Learn More  >

CFD Prediction of Secondary Airflow Through Holes in Rotating Shafts

[+] Author Affiliations
Colin Young, Guy D. Snowsill

Rolls-Royce plc, Derby, England

Paper No. GT2003-38077, pp. 905-912; 8 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


Internal cooling of gas turbine engines is achieved by bleeding air off from various compressor stages and delivering it, via a complex network of flow passages, to the desired location. In modern gas turbines the air bled off for such purposes may account for up to 20% of the core airflow and is controlled by static and rotating restrictions such as orifices and seals. As this secondary air makes no direct contribution to engine thrust, there are strong economic incentives for acquiring a detailed knowledge of the flow characteristics of such devices under engine operating conditions, so that secondary air consumption can be minimised. In the present work the behaviour of secondary airflow through radial drillings in concentric shaft assemblies undergoing co- and contra-rotation is investigated using CFD techniques. The results of this work compare well with previously published orifice flow data and provide qualitative and quantitative information on these complex flows to support future air system component design.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In