Full Content is available to subscribers

Subscribe/Learn More  >

Phase Distribution in Buoyancy-Driven Bubbly Flows

[+] Author Affiliations
Asghar Esmaeeli, Chan Ching, Mamdouh Shoukri

McMaster University, Hamilton, ON, Canada

Paper No. FEDSM2002-31236, pp. 523-529; 7 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


This study aims to investigate the effect of topology change on the rise velocity of bubbly flows and the phase distribution in a channel at a moderate Reynolds number. A front tracking/finite difference method is used to solve the momentum equation inside and outside deformable bubbles. It is found that bubble/bubble coalescence enhances the average rise velocity of the bubbles dramatically and also increases the fluctuations of the liquid velocity. Examination of the pair distribution function shows that the flow becomes more non-homogeneous as a result of topology change.

Copyright © 2002 by ASME
Topics: Buoyancy , Bubbly flow



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In