0

Full Content is available to subscribers

Subscribe/Learn More  >

Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets

[+] Author Affiliations
Ralph J. Volino

U.S. Naval Academy, Annapolis, MD

Paper No. GT2003-38729, pp. 845-859; 15 pages
doi:10.1115/GT2003-38729
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re = 25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In