0

Full Content is available to subscribers

Subscribe/Learn More  >

An Approach to Parallel Computing in an Eulerian-Lagrangian Two-Phase Flow Model

[+] Author Affiliations
Marion W. Vance, Kyle D. Squires

Arizona State University, Tempe, AZ

Paper No. FEDSM2002-31225, pp. 423-430; 8 pages
doi:10.1115/FEDSM2002-31225
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 2: Symposia and General Papers, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3616-9 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

An approach to parallel solution of an Eulerian-Lagrangian model of dilute gas-solid flows is presented. Using Lagrangian treatments for the dispersed phase, one of the principal computational challenges arises in models in which inter-particle interactions are taken into account. Deterministic treatment of particle-particle collisions in the present work pose the most computationally intensive aspect of the simulation. Simple searches lead to algorithms whose cost is O(N2 p ) where Np is the particle population. The approach developed in the current effort is based on localizing collision detection neighborhoods using a cell-index method and spatially distributing those neighborhoods for parallel solution. The method is evaluated using simulations of the gas-solid turbulent flow in a vertical channel. The instantaneous position and the velocity of any particle is obtained by solving the equation of motion for a small rigid sphere assuming that the resulting force induced by the fluid reduces to the drag contribution. Binary particle collisions without energy dissipation or inter-particle friction are considered. The carrier flow is computed using Large Eddy Simulation of the incompressible Navier-Stokes equations. The entire dispersed-phase population is partitioned via static spatial decomposition of the domain to maximize parallel efficiency. Simulations on small numbers of distributed memory processors show linear speedup in processing of the collision detection step and nearly optimal reductions in simulation time for the entire solution.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In