Full Content is available to subscribers

Subscribe/Learn More  >

Transition Modelling With the SST Turbulence Model and an Intermittency Transport Equation

[+] Author Affiliations
Koen Lodefier, Bart Merci, Chris De Langhe, Erik Dick

Ghent University, Gent, Belgium

Paper No. GT2003-38282, pp. 771-777; 7 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


A transition model for describing bypass transition is presented. It is based on a two-equations k–ω model and a dynamic equation for intermittency factor. The intermittency factor is a multiplier of the turbulent viscosity computed by the turbulence model. Following a suggestion by Menter et al. [1], the start of transition is computed based on local variables. The choice of the Shear-Stress Transport (SST) model instead of a k–ε model is explained. The quality of the transition model, developed on flat plate test cases, is illustrated for cascades.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In