Full Content is available to subscribers

Subscribe/Learn More  >

A Receptivity Based Transition Model

[+] Author Affiliations
Mark W. Johnson

University of Liverpool, Liverpool, UK

Paper No. GT2003-38073, pp. 723-728; 6 pages
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 5: Turbo Expo 2003, Parts A and B
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3688-6 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME


A numerical procedure for predicting the receptivity of laminar boundary layers to freestream turbulence, consisting of vortex arrays with arbitrary orientation, has been developed previously. In the current paper this method is refined to improve accuracy using an unstructured computational grid. Results show that boundary layers only have high receptivity to a narrow band of normal and spanwise frequencies. The computed near wall gains have similar values to those obtained by experiment for zero pressure gradient boundary layers. Near wall gains are also obtained for a wide range of favourable and adverse pressure gradients for both attached and separated boundary layers. The gain values are used to predict start of transition values which are in reasonable agreement with Reθ values which are in reasonable agreement with the Abu-Ghannam and Shaw correlations. The current results extend transition inception prediction into the separated flow regime.

Copyright © 2003 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In